El intercambio y la participación promueven el crecimiento
y trabajan juntos para el desarrollo común
El propósito de un disipador de calor es aumentar el área de transferencia de calor dentro de un espacio de volumen determinado. Mejorando la forma de la estructura, se puede aumentar la eficiencia de transferencia de calor desde la superficie hacia el fluido circundante. Mediante tratamientos de superficie, entre otras técnicas, se aumenta el área efectiva de transferencia, logrando así mejorar la disipación de calor y controlar la temperatura.
En aplicaciones donde la densidad de potencia de volumen y la densidad de flujo térmico no son altas, los disipadores con aletas rectas y rectangulares son populares entre los ingenieros debido a su estructura simple, su costo de fabricación razonable y su buen rendimiento de disipación de calor.
Comparación de diferentes métodos de transferencia de calor
1-Diseño de aletas de disipador de calor
Un disipador de calor actúa como una superficie de disipación extendida, centrándose principalmente en parámetros como la altura, la forma, el espaciado de las aletas y el grosor de la placa base.
Dimensiones del disipador de calor de aletas planas
Según el diagrama anterior, se puede calcular el área de disipación extendida del disipador de calor:
Área de una sola aleta:Af = 2L(h+t/2),
Área de espacios:Ab= Lh,
Área total de disipación de calor: At=nAf +(n±1)Ab (n es el número de aletas).
Vista seccional de la aleta
La función principal de las aletas es aumentar la superficie para mejorar la eficiencia de la transferencia de calor.El espaciado, el grosor y la altura de las aletas son factores clave para determinar la cantidad, distribución y superficie de las aletas.Como se muestra en la imagen, cuando h↑ o t↓, las aletas son más altas, delgadas y densas, lo que permite una mayor superficie de disipación.
Cuando aumenta la superficie de las aletas, su contacto con el aire también aumenta, lo que facilita la disipación de calor.Los ingenieros también pueden aumentar la superficie de disipación optimizando la forma de las aletas, como onduladas o dentadas.
Aunque una mayor superficie de las aletas mejora la disipación de calor, no significa necesariamente que más grande siempre sea mejor.Ya sea con disipación natural o refrigeración forzada, el espaciado de las aletas es un factor importante para el coeficiente de transferencia de calor del aire.
Impacto del espacio y la altura de las aletas en la eficiencia de disipación de calor.
En condiciones de disipación natural, las variaciones de temperatura en la superficie del disipador generan convección natural y flujo de la capa límite de aire en las paredes de las aletas. Un espaciado demasiado estrecho puede obstaculizar este proceso.En condiciones de refrigeración forzada, el grosor de la capa límite en las aletas se comprime, permitiendo un espaciado más estrecho, pero está limitado por los métodos de fabricación y la fuerza motriz. Por lo tanto, es crucial equilibrar el grosor y la altura de las aletas.
2-Diseño de la base del disipador de calor
El grosor de la base es un factor importante que afecta la eficiencia del disipador de calor. Cuando la base es delgada, la resistencia térmica hacia las aletas alejadas de la fuente de calor es mayor, lo que provoca una distribución desigual de la temperatura y reduce la resistencia del disipador a los choques térmicos.
Aumentar el grosor de la base puede corregir la distribución desigual de la temperatura y mejorar la resistencia a los choques térmicos, aunque una base demasiado gruesa puede causar acumulación de calor y reducir la capacidad de conducción térmica.
Esquema del principio de funcionamiento del disipador térmico
Como se muestra en la imagen:
Cuando la superficie de la fuente de calor es menor que la de la placa base, el calor debe difundirse desde el centro hacia los bordes, formando una resistencia térmica de difusión. La ubicación de la fuente de calor también influye en esta resistencia. Si la fuente está cerca del borde del disipador, el calor se puede transferir más fácilmente por el borde, reduciendo así la resistencia de difusión.
Nota: La resistencia térmica de difusión se refiere a la resistencia que se encuentra en el diseño de un disipador de calor cuando el calor se difunde desde el centro de la fuente de calor hacia los bordes. Este fenómeno suele ocurrir cuando hay una gran diferencia entre el área de la fuente de calor y el área de la base, lo que hace que el calor deba difundirse de una zona más pequeña a una zona más grande.
3-Proceso de conexión entre las aletas y la placa base
El proceso de conexión entre las aletas y la placa base del disipador generalmente involucra varios métodos para asegurar una buena conductividad térmica y estabilidad mecánica. Se divide principalmente en dos categorías: integrado y no integrado.
En los disipadores integrados, las aletas y la placa base forman una sola pieza, sin resistencia térmica de contacto. Los métodos principales son los siguientes:
l Moldeo por inyección de aluminio: Al fundir el lingote de aluminio en estado líquido, se introduce a alta presión en un molde metálico, permitiendo que el disipador se forme directamente en la máquina de inyección, creando aletas con formas complejas.
l Extrusión de aluminio: Luego de calentar el aluminio, se coloca en un cilindro de extrusión y se aplica presión para que fluya a través de un molde específico, obteniendo un material bruto con la forma y tamaño de sección deseado, y se somete a procesos adicionales de corte y acabado.
l El tratamiento de forjado en frío tiene la ventaja de poder crear aletas de disipación finas con un alto coeficiente de conductividad térmica, aunque a un costo relativamente mayor. Es más adecuado para formas especiales en comparación con la extrusión de aluminio.
l Los disipadores con aletas fabricadas por fresado pueden ser de cobre, con alta conductividad térmica, y las aletas pueden ser muy finas. Las aletas se levantan directamente de la placa base con una herramienta, aunque altas tensiones pueden causar deformación si son muy largas o altas.
En la fabricación no integrada, las aletas de refrigeración y la placa base se procesan por separado y luego se ensamblan mediante soldadura, remachado o pegado. Los principales métodos son:
l Soldadura: Las aletas y la placa base se conectan mediante un material de soldadura, que incluye soldadura a alta temperatura y soldadura con pasta de estaño a baja temperatura;
La soldadura tiene buenas propiedades de transferencia de calor; al soldar sustratos de Al y aletas, se requiere un recubrimiento de níquel, lo que aumenta el costo y no es adecuado para disipadores de gran tamaño; al usar soldadura, no se necesita recubrimiento de níquel, pero el costo de soldadura sigue siendo alto.
l Remachado: Las aletas se insertan en la ranura de la placa base, luego la ranura se presiona hacia el centro mediante un molde, asegurando así un ajuste firme y una conexión sólida con las aletas de refrigeración.
La ventaja del remachado es su buena capacidad de transferencia de calor, pero los productos remachados tienen riesgo de generar espacios y aflojamientos tras un uso repetido; se puede mejorar el proceso de remachado para aumentar la fiabilidad, pero esto también incrementa los costos. Por lo tanto, los disipadores remachados se utilizan comúnmente en situaciones donde no se requieren altos niveles de fiabilidad.
l Adhesión: Generalmente se utiliza resina epóxica conductora de calor para pegar firmemente las aletas de refrigeración a la placa base, asegurando así la conducción de calor.
La adhesión utiliza resina epóxica conductora de calor, cuyo coeficiente de conductividad térmica es mucho más bajo que el de las soldaduras, pero es adecuada para aletas más altas, altas proporciones y disipadores de pequeño espaciado. Se puede utilizar en situaciones donde las exigencias de rendimiento térmico no son altas.
Actualizaremos periódicamente la información y las tecnologías relacionadas con el diseño térmico y la reducción de peso. Gracias por su interés en Walmate.