Ressourcenzentrum
Austausch und Teilen fördern Wachstum,
Zusammenarbeit führt zu gemeinsamer Entwicklung.

Überprüfung der Kühlsysteme für Wasserstoff-Brennstoffzellenfahrzeuge
2024.05.06 Jack.wang@walmate.com


Zusammenfassung: Wasserstoff-Brennstoffzellen, auch Protonenaustauschmembran-Brennstoffzellen (PEMFC) genannt, werden aufgrund ihrer hohen Effizienz, Null-Emissionen und Null-Umweltverschmutzung häufig in Ladestationen für Elektrofahrzeuge, Autos und anderen Stromerzeugungsanlagen eingesetzt.

Fahrzeuge mit Wasserstoff-Brennstoffzelle geben im Betrieb drei- bis fünfmal mehr Wärme ab als Fahrzeuge mit herkömmlichem Brennstoffzellenantrieb.

In diesem Artikel werden die aktuellen Technologien zur Wärmeableitung von Wasserstoff-Brennstoffzellen kurz vorgestellt.


1-Wie Wasserstoff-Brennstoffzellen funktionieren

Wasserstoff-Brennstoffzellen geben im Betrieb eine große Wärmemenge ab, wovon etwa 55 % auf elektrochemische Reaktionswärme, 35 % auf irreversible elektrochemische Reaktionswärme, etwa 10 % Joule-Wärme und etwa Kondensationswärme sowie verschiedene Wärmeverluste entfallen 5 %.

Wasserstoff-Brennstoffzellen produzieren ungefähr so viel Wärme wie Strom.

Wenn es nicht rechtzeitig abgebaut wird, steigt die Temperatur im Inneren der Batterie deutlich an und beeinträchtigt deren Lebensdauer.

图片1.png

PEM-Reaktionsprinzip


2-Wärmeableitung einer Wasserstoff-Brennstoffzelle


Compared to fuel powered vehicles, hydrogen fuel cell vehicles have a higher heat generation and a more complex system. At the same time, due to the limitation of the working temperature of hydrogen fuel cells, the temperature difference between hydrogen fuel cells and the outside world is smaller, making it more difficult for the heat dissipation system to dissipate heat. The working temperature of hydrogen fuel cells has a significant impact on fluid flow resistance, catalyst activity, stack efficiency, and stability, thus requiring an efficient heat dissipation system.


图片2.png


Im Vergleich zu kraftstoffbetriebenen Fahrzeugen haben Wasserstoff-Brennstoffzellenfahrzeuge einen höheren Heizwert und komplexere Systeme.Gleichzeitig ist aufgrund der Begrenzung der Betriebstemperatur von Wasserstoff-Brennstoffzellen der Temperaturunterschied zwischen Wasserstoff-Brennstoffzellen und der Außenwelt gering, was es für das Wärmeableitungssystem schwieriger macht, Wärme abzuleiten.Die Betriebstemperatur von Wasserstoff-Brennstoffzellen hat einen erheblichen Einfluss auf den Flüssigkeitsströmungswiderstand, die Katalysatoraktivität, die Stapeleffizienz und die Stabilität. Daher sind effiziente Wärmeableitungssysteme erforderlich.Die Flüssigkeitskühlungstechnologie ist derzeit die gängige Technologie für Wasserstoff-Brennstoffzellen in Automobilen. Ziel ist es, den Stromverbrauch der Wasserpumpe durch Reduzierung des Systemdruckabfalls zu senken, überschüssige Wärme in Wasserstoff-Brennstoffzellen bei minimalem Stromverbrauch zu eliminieren und die Verteilung der zirkulierenden Arbeitsflüssigkeitskanäle zu optimieren, um interne Temperaturunterschiede zu verringern und die Gleichmäßigkeit der Batterietemperaturverteilung zu verbessern. 90 % der in Wasserstoffbrennstoffzellen erzeugten Wärme werden vom Wärmeableitungssystem durch Wärmeleitung und Konvektion abgeführt, während 10 % der Wärme durch Strahlungswärmeableitung an die Außenumgebung abgegeben werden.Zu den traditionellen Wärmeableitungsmethoden gehören Luftkühlung, Flüssigkeitskühlung und Phasenwechsel-Wärmeableitung.

3- Wärmeübertragung in PEMFC-Systemen

3.1 Wärmeableitung im Stapel

Nachdem im PEMFC Wärme erzeugt wurde, wird die Wärme zwischen verschiedenen Komponenten im PEMFC und der Außenumgebung übertragen.

Die Wärmeübertragung innerhalb des Brennstoffzellenstapels hängt hauptsächlich vom Wärmewiderstand jeder Komponente und dem Kontaktwärmewiderstand zwischen verschiedenen Komponenten ab. Da die Gasdiffusionsschicht eine „Brücke“ ist, die die Hauptwärme erzeugenden Komponenten (Membranelektroden) und die Hauptwärmeableitungskomponenten (Bipolarplatten) verbindet, haben ihr Wärmewiderstand und der Kontaktwärmewiderstand mit anderen Komponenten einen erheblichen Einfluss auf die Wärme Übertragungsleistung innerhalb der PEMFC. Darüber hinaus kann der thermische Kontaktwiderstand zwischen verschiedenen Komponenten einen erheblichen Einfluss auf die interne Wärmeübertragung des Brennstoffzellenstapels haben.

图片3.png


3.2 Wärmeübertragung des Kühlmittels


Zu den Kühlmethoden für Brennstoffzellen gehören Luftkühlung, Flüssigkeitskühlung und Phasenwechselkühlung. Zu den Faktoren, die die Wärmeübertragung des Kühlmittels beeinflussen, gehören das PEMFC-Stapelende, das Kühlmittel selbst und das Kühlerende. Das Kühlmittel steht in direktem Kontakt mit den Bipolarplatten am Ende des PEMFC-Stapels, sodass die Kanalstruktur des Kühlmittels einen erheblichen Einfluss auf dessen Wärmeübertragung hat.

Darüber hinaus beeinflussen auch die Eigenschaften des Kühlmittels selbst den damit verbundenen Wärmeübertragungsprozess.

Angesichts des Platzmangels kann die Wahl eines Kühlmittels mit einer größeren Wärmekapazität die Größe des Kühlkörpers reduzieren und die Wärmemanagementleistung der PEMFC verbessern. Daher wird der Bedarf an neuen hocheffizienten Kühlmitteln immer offensichtlicher.


Wir werden regelmäßig technische Informationen und Neuigkeiten zu Wärmedesign und Leichtbau aktualisieren und mit Ihnen teilen. Vielen Dank für Ihr Interesse an Walmate.