We Work
To Understand
Your Project Goals and Outputs

Cooling requirement in the AI and supercomputing

High power consumption and high density are the future of data centers. Liquid cooling will become the mainstream cooling solution for AI servers.


Technology and Business Trends

With the commercialization of AIGC products such as large models, the demand for AI servers will rapidly increase, with a large number of high-power CPU and GPU chips driving up the power consumption of the entire AI server.

 

In terms of CPU, as the number of cores increases, processor performance continues to improve, driving the continuous increase in processor power. In special scenarios (such as high-performance cloud computing), processors will use overclocking to improve computational performance and further increase power consumption.

 

 In terms of GPU, some of the latest products can consume up to 700W of power, which exceeds the cooling capacity of traditional air-cooled systems.

 

In the future, the computing power density of AI clusters is generally expected to reach 20-50kW/cabinet, while natural air cooling technology generally only supports 8-10kW. Micro modules with cold and hot air duct isolation and water cooled air conditioning horizontal cooling will significantly reduce the cost-effectiveness after the cabinet power exceeds 15kW, and the ability and economic advantages of liquid cooling cooling solutions will gradually become prominent.


Walmate AI and supercomputing
liquid cooling solutions
Characteristics of Liquid Cooling Technology

The basic principle of liquid cooling scheme: Liquid cooling is a technology that uses liquid as the refrigerant to transfer the heat generated by the internal components of IT equipment in data centers to the outside of the equipment through liquid flow, cooling the heating components of IT equipment, and ensuring the safe operation of IT equipment.

 

Cold plate liquid cooling:Cold plate liquid cooling is a form of heat dissipation in which the heat of the heating device is indirectly transferred to the cooling liquid enclosed in the circulation pipeline through a liquid cooling plate (usually a closed chamber composed of conductive metals such as copper and aluminum), and the heat is carried away by the cooling liquid. The cold plate liquid cooling scheme has the highest technological maturity and is an effective application solution for deploying high-power equipment, improving energy efficiency, reducing refrigeration operating costs, and reducing Total Cost of Ownership (TCO).

 

 Advantages of liquid cooling: Liquid cooling has ultra-high energy efficiency, ultra-high heat density, efficient heat dissipation, and is not affected by altitude, region, temperature, and other environmental factors.


Why Liquid Cooled Liquid cooled server is becoming popular?

● l The popularity of large models and AIGC has led to a surge in the construction of intelligent computing centers and computing power centers in various regions.

 

● l The country has put forward higher requirements for data center PUE, coupled with the continuous promotion of the "dual carbon" policy. As a core IT infrastructure, servers need to withstand multiple pressures such as heat dissipation and "carbon energy dual testing".

 

● l The thermal power of chips has reached the limit of air cooling. The application of liquid cooling technology in servers has become one of the preferred methods.


Working Principle
of Liquid Cooled Server
Heat Exchang

The coolant circulates through the pipeline under the drive of the pump. When the coolant flows through the heat exchanger inside the server, it exchanges heat with high-temperature components (such as CPU, GPU, etc.) to take away the heat.


Heat Dissipation

The coolant dissipates heat into the environment through the radiator, maintaining a low temperature state, thereby achieving continuous and stable operation of the server.